3.612 \(\int \frac{(d+e x)^{5/2}}{a-c x^2} \, dx\)

Optimal. Leaf size=167 \[ -\frac{\left (\sqrt{c} d-\sqrt{a} e\right )^{5/2} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{\sqrt{a} c^{7/4}}+\frac{\left (\sqrt{a} e+\sqrt{c} d\right )^{5/2} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{a} e+\sqrt{c} d}}\right )}{\sqrt{a} c^{7/4}}-\frac{2 e (d+e x)^{3/2}}{3 c}-\frac{4 d e \sqrt{d+e x}}{c} \]

[Out]

(-4*d*e*Sqrt[d + e*x])/c - (2*e*(d + e*x)^(3/2))/(3*c) - ((Sqrt[c]*d - Sqrt[a]*e)^(5/2)*ArcTanh[(c^(1/4)*Sqrt[
d + e*x])/Sqrt[Sqrt[c]*d - Sqrt[a]*e]])/(Sqrt[a]*c^(7/4)) + ((Sqrt[c]*d + Sqrt[a]*e)^(5/2)*ArcTanh[(c^(1/4)*Sq
rt[d + e*x])/Sqrt[Sqrt[c]*d + Sqrt[a]*e]])/(Sqrt[a]*c^(7/4))

________________________________________________________________________________________

Rubi [A]  time = 0.397827, antiderivative size = 167, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {704, 825, 827, 1166, 208} \[ -\frac{\left (\sqrt{c} d-\sqrt{a} e\right )^{5/2} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{\sqrt{a} c^{7/4}}+\frac{\left (\sqrt{a} e+\sqrt{c} d\right )^{5/2} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{a} e+\sqrt{c} d}}\right )}{\sqrt{a} c^{7/4}}-\frac{2 e (d+e x)^{3/2}}{3 c}-\frac{4 d e \sqrt{d+e x}}{c} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(5/2)/(a - c*x^2),x]

[Out]

(-4*d*e*Sqrt[d + e*x])/c - (2*e*(d + e*x)^(3/2))/(3*c) - ((Sqrt[c]*d - Sqrt[a]*e)^(5/2)*ArcTanh[(c^(1/4)*Sqrt[
d + e*x])/Sqrt[Sqrt[c]*d - Sqrt[a]*e]])/(Sqrt[a]*c^(7/4)) + ((Sqrt[c]*d + Sqrt[a]*e)^(5/2)*ArcTanh[(c^(1/4)*Sq
rt[d + e*x])/Sqrt[Sqrt[c]*d + Sqrt[a]*e]])/(Sqrt[a]*c^(7/4))

Rule 704

Int[((d_) + (e_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1))/(c*(m - 1)), x] +
Dist[1/c, Int[((d + e*x)^(m - 2)*Simp[c*d^2 - a*e^2 + 2*c*d*e*x, x])/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}
, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[m, 1]

Rule 825

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(g*(d + e*x)^m)/
(c*m), x] + Dist[1/c, Int[((d + e*x)^(m - 1)*Simp[c*d*f - a*e*g + (g*c*d + c*e*f)*x, x])/(a + c*x^2), x], x] /
; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && FractionQ[m] && GtQ[m, 0]

Rule 827

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2, Subst[Int[(e*f
 - d*g + g*x^2)/(c*d^2 + a*e^2 - 2*c*d*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x]
 && NeQ[c*d^2 + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{5/2}}{a-c x^2} \, dx &=-\frac{2 e (d+e x)^{3/2}}{3 c}-\frac{\int \frac{\sqrt{d+e x} \left (-c d^2-a e^2-2 c d e x\right )}{a-c x^2} \, dx}{c}\\ &=-\frac{4 d e \sqrt{d+e x}}{c}-\frac{2 e (d+e x)^{3/2}}{3 c}+\frac{\int \frac{c d \left (c d^2+3 a e^2\right )+c e \left (3 c d^2+a e^2\right ) x}{\sqrt{d+e x} \left (a-c x^2\right )} \, dx}{c^2}\\ &=-\frac{4 d e \sqrt{d+e x}}{c}-\frac{2 e (d+e x)^{3/2}}{3 c}+\frac{2 \operatorname{Subst}\left (\int \frac{-c d e \left (3 c d^2+a e^2\right )+c d e \left (c d^2+3 a e^2\right )+c e \left (3 c d^2+a e^2\right ) x^2}{-c d^2+a e^2+2 c d x^2-c x^4} \, dx,x,\sqrt{d+e x}\right )}{c^2}\\ &=-\frac{4 d e \sqrt{d+e x}}{c}-\frac{2 e (d+e x)^{3/2}}{3 c}-\frac{\left (\sqrt{c} d-\sqrt{a} e\right )^3 \operatorname{Subst}\left (\int \frac{1}{c d-\sqrt{a} \sqrt{c} e-c x^2} \, dx,x,\sqrt{d+e x}\right )}{\sqrt{a} c}+\frac{\left (\sqrt{c} d+\sqrt{a} e\right )^3 \operatorname{Subst}\left (\int \frac{1}{c d+\sqrt{a} \sqrt{c} e-c x^2} \, dx,x,\sqrt{d+e x}\right )}{\sqrt{a} c}\\ &=-\frac{4 d e \sqrt{d+e x}}{c}-\frac{2 e (d+e x)^{3/2}}{3 c}-\frac{\left (\sqrt{c} d-\sqrt{a} e\right )^{5/2} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{\sqrt{a} c^{7/4}}+\frac{\left (\sqrt{c} d+\sqrt{a} e\right )^{5/2} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d+\sqrt{a} e}}\right )}{\sqrt{a} c^{7/4}}\\ \end{align*}

Mathematica [A]  time = 0.259399, size = 158, normalized size = 0.95 \[ \frac{-2 \sqrt{a} c^{3/4} e \sqrt{d+e x} (7 d+e x)-3 \left (\sqrt{c} d-\sqrt{a} e\right )^{5/2} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )+3 \left (\sqrt{a} e+\sqrt{c} d\right )^{5/2} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{a} e+\sqrt{c} d}}\right )}{3 \sqrt{a} c^{7/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(5/2)/(a - c*x^2),x]

[Out]

(-2*Sqrt[a]*c^(3/4)*e*Sqrt[d + e*x]*(7*d + e*x) - 3*(Sqrt[c]*d - Sqrt[a]*e)^(5/2)*ArcTanh[(c^(1/4)*Sqrt[d + e*
x])/Sqrt[Sqrt[c]*d - Sqrt[a]*e]] + 3*(Sqrt[c]*d + Sqrt[a]*e)^(5/2)*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c
]*d + Sqrt[a]*e]])/(3*Sqrt[a]*c^(7/4))

________________________________________________________________________________________

Maple [B]  time = 0.267, size = 460, normalized size = 2.8 \begin{align*} -{\frac{2\,e}{3\,c} \left ( ex+d \right ) ^{{\frac{3}{2}}}}-4\,{\frac{de\sqrt{ex+d}}{c}}+3\,{\frac{ad{e}^{3}}{\sqrt{ac{e}^{2}}\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}\arctan \left ({\frac{\sqrt{ex+d}c}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}} \right ) }+{ce{d}^{3}\arctan \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}}-{\frac{a{e}^{3}}{c}\arctan \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}}-3\,{\frac{e{d}^{2}}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}\arctan \left ({\frac{\sqrt{ex+d}c}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}} \right ) }+3\,{\frac{ad{e}^{3}}{\sqrt{ac{e}^{2}}\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}{\it Artanh} \left ({\frac{\sqrt{ex+d}c}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}} \right ) }+{ce{d}^{3}{\it Artanh} \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}}+{\frac{a{e}^{3}}{c}{\it Artanh} \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}}+3\,{\frac{e{d}^{2}}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}{\it Artanh} \left ({\frac{\sqrt{ex+d}c}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(5/2)/(-c*x^2+a),x)

[Out]

-2/3*e*(e*x+d)^(3/2)/c-4*d*e*(e*x+d)^(1/2)/c+3/(a*c*e^2)^(1/2)/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan((e*x+d)
^(1/2)*c/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2))*a*d*e^3+e*c/(a*c*e^2)^(1/2)/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan
((e*x+d)^(1/2)*c/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2))*d^3-1/c/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/
2)*c/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2))*a*e^3-3*e/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c/((-c*
d+(a*c*e^2)^(1/2))*c)^(1/2))*d^2+3/(a*c*e^2)^(1/2)/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c/((c
*d+(a*c*e^2)^(1/2))*c)^(1/2))*a*d*e^3+e*c/(a*c*e^2)^(1/2)/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2
)*c/((c*d+(a*c*e^2)^(1/2))*c)^(1/2))*d^3+1/c/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c/((c*d+(a*
c*e^2)^(1/2))*c)^(1/2))*a*e^3+3*e/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c/((c*d+(a*c*e^2)^(1/2
))*c)^(1/2))*d^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{{\left (e x + d\right )}^{\frac{5}{2}}}{c x^{2} - a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(-c*x^2+a),x, algorithm="maxima")

[Out]

-integrate((e*x + d)^(5/2)/(c*x^2 - a), x)

________________________________________________________________________________________

Fricas [B]  time = 2.58692, size = 3356, normalized size = 20.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(-c*x^2+a),x, algorithm="fricas")

[Out]

-1/6*(3*c*sqrt((c^2*d^5 + 10*a*c*d^3*e^2 + 5*a^2*d*e^4 + a*c^3*sqrt((25*c^4*d^8*e^2 + 100*a*c^3*d^6*e^4 + 110*
a^2*c^2*d^4*e^6 + 20*a^3*c*d^2*e^8 + a^4*e^10)/(a*c^7)))/(a*c^3))*log((5*c^4*d^8*e - 14*a^2*c^2*d^4*e^5 + 8*a^
3*c*d^2*e^7 + a^4*e^9)*sqrt(e*x + d) + (10*a*c^4*d^5*e^2 + 20*a^2*c^3*d^3*e^4 + 2*a^3*c^2*d*e^6 - (a*c^6*d^2 +
 a^2*c^5*e^2)*sqrt((25*c^4*d^8*e^2 + 100*a*c^3*d^6*e^4 + 110*a^2*c^2*d^4*e^6 + 20*a^3*c*d^2*e^8 + a^4*e^10)/(a
*c^7)))*sqrt((c^2*d^5 + 10*a*c*d^3*e^2 + 5*a^2*d*e^4 + a*c^3*sqrt((25*c^4*d^8*e^2 + 100*a*c^3*d^6*e^4 + 110*a^
2*c^2*d^4*e^6 + 20*a^3*c*d^2*e^8 + a^4*e^10)/(a*c^7)))/(a*c^3))) - 3*c*sqrt((c^2*d^5 + 10*a*c*d^3*e^2 + 5*a^2*
d*e^4 + a*c^3*sqrt((25*c^4*d^8*e^2 + 100*a*c^3*d^6*e^4 + 110*a^2*c^2*d^4*e^6 + 20*a^3*c*d^2*e^8 + a^4*e^10)/(a
*c^7)))/(a*c^3))*log((5*c^4*d^8*e - 14*a^2*c^2*d^4*e^5 + 8*a^3*c*d^2*e^7 + a^4*e^9)*sqrt(e*x + d) - (10*a*c^4*
d^5*e^2 + 20*a^2*c^3*d^3*e^4 + 2*a^3*c^2*d*e^6 - (a*c^6*d^2 + a^2*c^5*e^2)*sqrt((25*c^4*d^8*e^2 + 100*a*c^3*d^
6*e^4 + 110*a^2*c^2*d^4*e^6 + 20*a^3*c*d^2*e^8 + a^4*e^10)/(a*c^7)))*sqrt((c^2*d^5 + 10*a*c*d^3*e^2 + 5*a^2*d*
e^4 + a*c^3*sqrt((25*c^4*d^8*e^2 + 100*a*c^3*d^6*e^4 + 110*a^2*c^2*d^4*e^6 + 20*a^3*c*d^2*e^8 + a^4*e^10)/(a*c
^7)))/(a*c^3))) + 3*c*sqrt((c^2*d^5 + 10*a*c*d^3*e^2 + 5*a^2*d*e^4 - a*c^3*sqrt((25*c^4*d^8*e^2 + 100*a*c^3*d^
6*e^4 + 110*a^2*c^2*d^4*e^6 + 20*a^3*c*d^2*e^8 + a^4*e^10)/(a*c^7)))/(a*c^3))*log((5*c^4*d^8*e - 14*a^2*c^2*d^
4*e^5 + 8*a^3*c*d^2*e^7 + a^4*e^9)*sqrt(e*x + d) + (10*a*c^4*d^5*e^2 + 20*a^2*c^3*d^3*e^4 + 2*a^3*c^2*d*e^6 +
(a*c^6*d^2 + a^2*c^5*e^2)*sqrt((25*c^4*d^8*e^2 + 100*a*c^3*d^6*e^4 + 110*a^2*c^2*d^4*e^6 + 20*a^3*c*d^2*e^8 +
a^4*e^10)/(a*c^7)))*sqrt((c^2*d^5 + 10*a*c*d^3*e^2 + 5*a^2*d*e^4 - a*c^3*sqrt((25*c^4*d^8*e^2 + 100*a*c^3*d^6*
e^4 + 110*a^2*c^2*d^4*e^6 + 20*a^3*c*d^2*e^8 + a^4*e^10)/(a*c^7)))/(a*c^3))) - 3*c*sqrt((c^2*d^5 + 10*a*c*d^3*
e^2 + 5*a^2*d*e^4 - a*c^3*sqrt((25*c^4*d^8*e^2 + 100*a*c^3*d^6*e^4 + 110*a^2*c^2*d^4*e^6 + 20*a^3*c*d^2*e^8 +
a^4*e^10)/(a*c^7)))/(a*c^3))*log((5*c^4*d^8*e - 14*a^2*c^2*d^4*e^5 + 8*a^3*c*d^2*e^7 + a^4*e^9)*sqrt(e*x + d)
- (10*a*c^4*d^5*e^2 + 20*a^2*c^3*d^3*e^4 + 2*a^3*c^2*d*e^6 + (a*c^6*d^2 + a^2*c^5*e^2)*sqrt((25*c^4*d^8*e^2 +
100*a*c^3*d^6*e^4 + 110*a^2*c^2*d^4*e^6 + 20*a^3*c*d^2*e^8 + a^4*e^10)/(a*c^7)))*sqrt((c^2*d^5 + 10*a*c*d^3*e^
2 + 5*a^2*d*e^4 - a*c^3*sqrt((25*c^4*d^8*e^2 + 100*a*c^3*d^6*e^4 + 110*a^2*c^2*d^4*e^6 + 20*a^3*c*d^2*e^8 + a^
4*e^10)/(a*c^7)))/(a*c^3))) + 4*(e^2*x + 7*d*e)*sqrt(e*x + d))/c

________________________________________________________________________________________

Sympy [B]  time = 70.1881, size = 418, normalized size = 2.5 \begin{align*} - \frac{4 a d e^{3} \operatorname{RootSum}{\left (t^{4} \left (256 a^{3} c e^{6} - 256 a^{2} c^{2} d^{2} e^{4}\right ) + 32 t^{2} a c d e^{2} - 1, \left ( t \mapsto t \log{\left (- 64 t^{3} a^{2} c d e^{4} + 64 t^{3} a c^{2} d^{3} e^{2} - 4 t a e^{2} - 4 t c d^{2} + \sqrt{d + e x} \right )} \right )\right )}}{c} - \frac{2 a e^{3} \operatorname{RootSum}{\left (256 t^{4} a^{2} c^{3} e^{4} - 32 t^{2} a c^{2} d e^{2} - a e^{2} + c d^{2}, \left ( t \mapsto t \log{\left (- 64 t^{3} a c^{2} e^{2} + 4 t c d + \sqrt{d + e x} \right )} \right )\right )}}{c} + 4 d^{3} e \operatorname{RootSum}{\left (t^{4} \left (256 a^{3} c e^{6} - 256 a^{2} c^{2} d^{2} e^{4}\right ) + 32 t^{2} a c d e^{2} - 1, \left ( t \mapsto t \log{\left (- 64 t^{3} a^{2} c d e^{4} + 64 t^{3} a c^{2} d^{3} e^{2} - 4 t a e^{2} - 4 t c d^{2} + \sqrt{d + e x} \right )} \right )\right )} - 6 d^{2} e \operatorname{RootSum}{\left (256 t^{4} a^{2} c^{3} e^{4} - 32 t^{2} a c^{2} d e^{2} - a e^{2} + c d^{2}, \left ( t \mapsto t \log{\left (- 64 t^{3} a c^{2} e^{2} + 4 t c d + \sqrt{d + e x} \right )} \right )\right )} - \frac{4 d e \sqrt{d + e x}}{c} - \frac{2 e \left (d + e x\right )^{\frac{3}{2}}}{3 c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(5/2)/(-c*x**2+a),x)

[Out]

-4*a*d*e**3*RootSum(_t**4*(256*a**3*c*e**6 - 256*a**2*c**2*d**2*e**4) + 32*_t**2*a*c*d*e**2 - 1, Lambda(_t, _t
*log(-64*_t**3*a**2*c*d*e**4 + 64*_t**3*a*c**2*d**3*e**2 - 4*_t*a*e**2 - 4*_t*c*d**2 + sqrt(d + e*x))))/c - 2*
a*e**3*RootSum(256*_t**4*a**2*c**3*e**4 - 32*_t**2*a*c**2*d*e**2 - a*e**2 + c*d**2, Lambda(_t, _t*log(-64*_t**
3*a*c**2*e**2 + 4*_t*c*d + sqrt(d + e*x))))/c + 4*d**3*e*RootSum(_t**4*(256*a**3*c*e**6 - 256*a**2*c**2*d**2*e
**4) + 32*_t**2*a*c*d*e**2 - 1, Lambda(_t, _t*log(-64*_t**3*a**2*c*d*e**4 + 64*_t**3*a*c**2*d**3*e**2 - 4*_t*a
*e**2 - 4*_t*c*d**2 + sqrt(d + e*x)))) - 6*d**2*e*RootSum(256*_t**4*a**2*c**3*e**4 - 32*_t**2*a*c**2*d*e**2 -
a*e**2 + c*d**2, Lambda(_t, _t*log(-64*_t**3*a*c**2*e**2 + 4*_t*c*d + sqrt(d + e*x)))) - 4*d*e*sqrt(d + e*x)/c
 - 2*e*(d + e*x)**(3/2)/(3*c)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(-c*x^2+a),x, algorithm="giac")

[Out]

Timed out